Absorptionen er et mål for, hvor meget lydabsorberende materiale, der findes i rummet. Nogle materialer virker lydabsorberende, selvom det ikke ses umiddelbart. Således virker gipsplader, glas og visse trægulve lydabsorberende i bassen. Det vender vi tilbage til. De forskellige materialers lydabsorberende virkning er meget forskellig. Beton og murværk er således praktisk talt helt uden virkning. Tæpper, tekstiler, stenuld og glasuld, træbeton (Troldtekt) med mere har derimod en kraftig virkning.
Denne egenskab udtrykkes ved absorptionskoefficienten (α). Absorptionskoefficienten er forholdet mellem den lydenergi, der absorberes af materialet (egentlig: den ikke-reflekterede lydenergi), og den lydenergi, der rammer materialet. Absorptionskoefficienten bliver således en faktor mellem 0 og 1, idet 0 udtrykker, at materialet overhovedet ikke absorberer lydenergi, og 1 udtrykker, at materialet absorberer al lydenergien. Beton har typisk en absorptionskoefficient på 0,01-0,02, svarende til 1-2 procent. Troldtekt med bagvedliggende mineraluld har typisk en absorptionskoefficient på 0,8-0,9, svarende til 80-90 procent.
En lydabsorberende virkning af et materiale i et givent rum er naturligt nok ikke alene afhængig af, hvor stor absorptionskoeficienten er, men også af hvor mange kvadratmeter af materialet, der er bragt ind i rummet. Så absorptionen eller – mere korrekt – det ækvivalente absorptionsareal (A) er således produktet af arealet i kvadratmeter multipliceret med absorptionskoefficienten:
A = S × α (m2Sab)
Vi kalder måleenheden ”kvadratmeter Sabine” (m2 Sab) for ikke at forveksle den med et ”normalt” areal. Absorptionen udtrykker den samlede virkning i rummet af det pågældende materiale. Den fysiske betydning af absorptionen kan udtrykkes som arealet af et åbent vindue (som jo absorberer 100 procent, eftersom lyden ikke kommer tilbage igen) med samme lydabsorberende virkning som det aktuelle antal kvadratmeter af materialet.
Vi tager for eksempel 10 kvadratmeter Troldtekt med en absorptionskoefficient på 0,8. Absorptionen bliver 10 × 0,8 eller 8 kvadratmeter Sabine. Den samme virkning har 8 kvadratmeter åbne vinduer, som absorberer 100 procent. Så akustisk er det altså det samme at placere 10 kvadratmeter Troldtekt i rummet som at åbne 8 kvadratmeter vinduer. I akustikkens barndom anvendte man faktisk udtrykket Open Window Unit, OWU, som betegnelse for absorptionen. Meget pædagogisk.
Vi er nu i stand til at opstille akustikkens vigtigste formel, Sabines formel, som sammenkæder efterklangstiden (T) med rummets volumen (V) og absorptionen (A), og proportionalitetsfaktoren på 0,16:
T = 0,16 × V/A, hvor A = S × α
Det primære er altså, at efterklangstiden er proportional med rummets volumen (det vil sige, at dobbelt så stor volumen giver dobbelt så lang efterklangstid) og omvendt proportional med absorptionen (dobbelt så stor absorption giver den halve efterklangstid). Proportionalitetsfaktoren 0,16 er en konstant, som kommer ind for at få pengene til at passe. Efterklangstiden er som bekendt defineret som den tid, det tager lydniveauet at falde med 60 dB. Hvis man havde valgt en anden definition – for eksempel at lydniveauet skulle falde med 40 dB – var faktoren også blevet en anden.
Sabines formel betyder, at det er muligt på forhånd at beregne den resulterende efterklangstid, når rummets størrelse (volumen) er kendt, og man samtidig ved, hvor meget absorption, der bringes ind i rummet. Allerede når rummet eksisterer på tegnebrættet, kan vi altså forudsige den efterklangstid, vi til sin tid vil få i det færdigbyggede rum. For at kunne lave beregningen som beskrevet, skal man, foruden kendskab til rummets dimensioner, også have kendskab til de akustiske egenskaber af de materialer, der skal bruges.
Det sker i form af data for absorptionskoefficienten (α) (se for eksempel tabellen side 9). Da materialernes lydabsorberende virkning er frekvensafhængig, afspejles dette i α-værdierne ved de forskellige frekvenser, i almindelighed i frekvensområdet 125-4.000 Hz.
De nødvendige værdier for α for de forskellige materialer kan man typisk hente på de enkelte fabrikanters websites (se for eksempel www.troldtekt.dk). I håndbøger og også på internettet kan man finde data for de byggematerialer, der ikke decideret er akustikmaterialer, såsom gulve, vinduer, murværk med videre. Tabellen på næste side kan også anvendes som udgangspunkt. Som det fremgår, er beregningen lineær, det vil sige, at bidragene til absorptionen fra de forskellige materialer og bygningsdele adderes for at få den totale absorption (A), som indgår i Sabines formel. For et givet rum gennemføres beregningen for hvert frekvensbånd for sig. På denne måde får vi rummets efterklangstid i hvert frekvensbånd og dermed efterklangskurven for rummet. Efterklangskurven er netop efterklangstidens frekvensafhængighed for det pågældende rum. Efterklangskurvens form er et vigtigt udtryk for den akustiske kvalitet af det pågældende rum. Det vender vi tilbage til.
Figur 7:



>> Læs også næste afsnit om de forskellige absorbenttyper